
Focused Clustering and Outlier Detection
in Large Attributed Graphs

Bryan Perozzi�, Leman Akoglu�
� Stony Brook University

Department of Computer Science
{bperozzi, leman}@cs.stonybrook.edu

Patricia Iglesias Sánchez◦, Emmanuel Müller◦•
◦ Karlsruhe Institute of Technology, • University of Antwerp

Department of Computer Science
{patricia.iglesias, emmanuel.mueller}@kit.edu

ABSTRACT
Graph clustering and graph outlier detection have been stud-
ied extensively on plain graphs, with various applications.
Recently, algorithms have been extended to graphs with at-
tributes as often observed in the real-world. However, all of
these techniques fail to incorporate the user preference into
graph mining, and thus, lack the ability to steer algorithms
to more interesting parts of the attributed graph.

In this work, we overcome this limitation and introduce a
novel user-oriented approach for mining attributed graphs.
The key aspect of our approach is to infer user preference by
the so-called focus attributes through a set of user-provided
exemplar nodes. In this new problem setting, clusters and
outliers are then simultaneously mined according to this
user preference. Specifically, our FocusCO algorithm iden-
tifies the focus, extracts focused clusters and detects outliers.
Moreover, FocusCO scales well with graph size, since we
perform a local clustering of interest to the user rather than
global partitioning of the entire graph. We show the effec-
tiveness and scalability of our method on synthetic and real-
world graphs, as compared to both existing graph clustering
and outlier detection approaches.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; I.5.3 [Pattern
Recognition]: Clustering

Keywords
focused graph mining; infer user preference; attributed graphs;
clustering; outlier mining; distance metric learning

1. INTRODUCTION
Many real-world graphs have attributes associated with

the nodes, in addition to their connectivity information.
For example, social networks contain both the friendship
relations as well as user attributes such as interests and de-
mographics. A protein-protein interaction network may not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623682

Figure 1: Example graph with two focused clusters
and one focused outlier.

only have the interaction relations but the gene expressions
associated with the proteins. Both types of information can
be described by a graph in which nodes represent the objects,
edges represent the relations between them, and feature vec-
tors associated with the nodes represent the attributes. Such
graph data is often referred to as an attributed graph.

For attributed graphs, we see major challenges that re-
main unsolved by traditional graph mining techniques [4, 10,
19, 24, 31], which consider plain graphs (without attributes).
Recent methods have been proposed for attributed graphs,
however, they either use all the given attributes [2, 14, 20,
34] or they perform an unsupervised feature selection [16, 18,
22, 26]. In contrast to all of these graph mining paradigms
(cf. Table 1), we consider a user-oriented setting where the
users can control the relevance of attributes and as a conse-
quence, the graph mining results.

In particular, we consider cluster and outlier detection
based on user preference. This focused clustering is of par-
ticular interest in attributed graphs, where users might not
be concerned with all but a few available attributes. As dif-
ferent attributes induce different clusterings of the graph,
the user should be able to steer the clustering accordingly.
As such, the user controls the clustering by providing a set of
exemplar nodes (perceived similar by the user) from which
we infer attribute weights of relevance that capture the user-
perceived similarity. The essence of user preference is cap-
tured by those attributes with large weights. We call these
the focus attributes, which form the basis of our approach
for discovering focused clusters and outliers.

To elaborate on this new terminology, we give a toy exam-
ple in Figure 1. The graph represents the friendship relations
and the node attributes denote degree, location, mother

tongue, and work. There are two focused clusters: On the

Table 1: Comparison of related work.

P
ro

p
er

ty

Graph clu
ste

rin
g

On attr
ibuted

graphs

Attr
ibute

subspace

User
-prefe

rre
d clu

ste
rs

Overla
pping clu

ste
rs

Outlie
r dete

ctio
n

Scalabilit
y

METIS [19], Spectral [24], Co-clustering [10] X X
Autopart, Cross-associations [7] X X X

PageRank-Nibble [3], [30], BigClam [33] X X X
Spectral Relational [20], SA-Cluster [34] X X

CoPaM [22], Gamer [16] X X X X
PICS [2] X X X

CODA [14] X X X
GOutRank [23], ConSub [18] X X X X

FocusCO [this paper] X X X X X X X

left, people know each other due to their degrees and loca-

tions. On the right, a similarity in work induces the second
cluster. As such, different user interest in subsets of the
attributes may induce different clusters. In case a user is in-
terested in degree and location, focused clustering should
only find the left cluster and not the right one. Analogously,
the example outlier is deviating with a college degree among
all others having PhDs, where degree is a focus attribute.

While our example is on a toy graph, our problem set-
ting has several practical applications in the real-world. For
instance, a marketing manager interested in selling cosmet-
ics could aim to find communities in a large social network
with its members being of a certain age, gender, and income-
level. S/he could then offer deals to a few members from
each community, and expect the news to propagate by the
word-of-mouth. A scientist could aim to identify clusters
of sky-objects that are all in close-distance to one another
(assuming a graph is constructed among sky-objects by dis-
tance in space) and share certain characteristics of interest
(e.g., helium level, temperature, light, etc.).

Such user-preferred clusters are likely a handful in the
graph, and thus an algorithm should be able to (i) effectively
identify user preference, (ii) efficiently “chop out” relevant
clusters locally without necessarily partitioning the whole
graph, and additionally (iii) spot outliers if any. In this
paper, we offer the following contributions:

• Focused Graph Mining: We propose a new user-
centric problem setting that exploits the user interest
for focused mining in attributed graphs.

• Steered Search by User Preference: We infer user
preference and steer the graph clustering and outlier
detection accordingly.

• Scaling to Large Graphs: Our proposed method
has near-linear time complexity, and with appropriate
initialization can run in time sub-linear w.r.t. the size
of the input graph.

In our evaluation we demonstrate the effectiveness and
scalability of our method on synthetic and real-world graphs,
compared to existing graph clustering and outlier detection
methods. Our experiments show that existing approaches
are not suitable for the new focused graph mining setting.

2. RELATED WORK
We show the highlights of related work in Table 1. The

two key differences of our work are summarized as follows:

(1) we introduce a new user-oriented problem setting for
attributed graphs, in which we aim to find focused clusters
and outliers based on user preference, and (2) we propose
an algorithm that simultaneously extracts relevant clusters
and outliers from large graphs. In the following, we discuss
related work in three areas; traditional plain graph mining,
attributed graph mining, and semi-supervised data mining.

Graph mining on plain graphs.
Graph partitioning has been well studied in the literature.

Widely used methods include METIS [19] and spectral clus-
tering [11, 24], which aim to find a k-way partitioning of
the graph. Different from partitioning, community detec-
tion methods [12] cluster the graph into variable size com-
munities. Autopart, cross-associations [7], and information-
theoretic co-clustering [10] are parameter-free examples to
graph clustering methods. Several methods [3, 30, 33] also
allow clusters to overlap as observed in real-world social and
communication networks. Works that aim to spot structural
outliers in plain graphs include [1, 28]. However, all of these
methods are limited to plain graphs (without attributes).

Graph mining on attributed graphs.
Compared to the wide range of work on plain graph min-

ing, there has been much less work on attributed graphs.
The representative methods [2, 14, 17, 20, 27, 34] aim to par-
tition the given graph into structurally dense and attribute-
wise homogeneous clusters, detect deviations from frequent
subgraphs [25], or search for community outliers in attributed
graphs [14]. These methods, however, enforce attribute ho-
mogeneity in all attributes. Recently some methods loosen
this constraint by unsupervised feature selection [26], sub-
space clustering [16, 22] and subspace outlier detection [18,
23] and extract cohesive subgraphs with homogeneity in a
subset of attributes. However, all of these methods either
do not perform a selection of attributes or do not allow for
user preference to steer the algorithm.

Semi-supervised methods.
A broad variety of methods for semi-supervised clustering

consider user-given constraints like ‘must-link’ and ‘cannot-
link’ referred to as constraint-based clustering [5]. There
also exist methods for semi-supervised outlier mining [13].
However, these methods are based on vector data and fur-
ther, not applicable to graphs with attributes.

Methods on seeded community mining [3, 8, 15, 30] find
communities around (user-given) seed nodes. However, those

methods find structural communities on plain graphs and
neither apply to attributed graphs, nor enable user prefer-
ence on attributes. Moreover, they do not provide outlier
detection. In contrast, we use user-given exemplar nodes
to automatically infer user preference on attributes. To the
best of our knowledge this problem setting is new and we
propose the first focused graph mining approach for simulta-
neous clustering and outlier detection in attributed graphs.

3. METHOD FocusCO
In this section we first introduce the notation and pose the

focused clustering and outlier detection problem formally.
Next, we discuss the main components of our approach and
walk through the details of our algorithm. Lastly, we analyze
the computational complexity of FocusCO.

3.1 Problem Formulation
In this paper we introduce the novel problem of focused

clustering and outlier detection in attributed graphs, defined
as follows: Given a large attributed graph G(V,E, F) with
|V | = n nodes and |E| = m edges, where each node is as-
sociated with |F | = d attributes (features), extract from G
only the (type of) clusters pertaining to a user u’s interest
(rather than partitioning the whole graph). To do so, the
user provides a small set Cex of exemplar nodes that s/he
considers to be similar to the type of nodes the clusters of
his/her interest should contain. Assuming that the nodes
in a cluster “unite” or “knit up” around a few defining at-
tributes, we then aim to infer the implicit weights βu (i.e.,
relevance) of attributes that “define” the nodes in Cex, i.e.,
the weights of attributes that make them as similar as pos-
sible. Thus, βu is expected to be a sparse vector with large
weights for only a few attributes (e.g., degree and location

in Figure 1), which we call the focus attributes.
Having inferred the attribute weights βu from user u, our

first goal is to extract focused clusters C from G that are
(1) structurally dense and well separated from the rest of
the graph, as well as (2) consistent on the focus attributes
with large weights. The focused clusters can be overlapping,
sharing several of their nodes, as observed in real-world so-
cial and communication networks. Moreover, the set C is
a subset of all the clusters in G since different sets of clus-
ters are expected to unite around different attributes and
we aim to extract only those that are specifically similar to
the type of clusters user u is interested in. Besides focused
clustering, our second goal is to also perform outlier detec-
tion. Outliers O are those nodes that structurally belong
to a focused cluster (i.e., have many cluster neighbors), but
deviate from its members in some focus attributes. In sum-
mary, the focused clustering and outlier detection problem
in attributed graphs is given as follows:

Given a large graph G(V,E, F) with node attributes, and
a set of exemplar nodes Cex of user u’s interest;

Infer attribute weights βu of relevance/importance,
Extract focused clusters C that are (1) dense in graph

structure, and (2) coherent in heavy focus attributes,
Detect focused outliers O, i.e. nodes that deviate from

their cluster members in some focus attributes.

3.2 Approach and Algorithm Details
Next we present the details of the three main components

of FocusCO: (1) inferring attribute weights, (2) extracting
focused clusters, and (3) outlier detection.

3.2.1 Inferring Attribute Relevance
Our focused clustering setting is a user-oriented one, where

each user is interested in extracting certain kind of clusters
from a given graph. The user steers the clustering by pro-
viding a small set of exemplar nodes that are similar to one
another as well as similar to the type of nodes the clus-
ters of his/her interest should contain. Our first goal then
is to identify the relevance weights of node attributes that
make the exemplar nodes similar to each other. This kind
of weighted similarity is often captured by the (inverse) Ma-
halanobis distance: the distance between two nodes with
feature vectors fi and fj is (fi − fj)TA(fi − fj). Setting
A as the identity matrix yields Euclidean distance, other-
wise the features/dimensions are weighted accordingly.

Given the exemplar nodes, how can we learn an A such
that they end up having small distance to each other? This
is known as the distance metric learning problem [29]. We
adopt the optimization objective by [32]:

min
A

∑
(i,j)∈PS

(fi − fj)TA(fi − fj) (1)

− γ log

(∑
(i,j)∈PD

√
(fi − fj)TA(fi − fj)

)
which is convex and enables efficient, local-minima-free al-
gorithms to solve it, especially for a diagonal solution.

We give the details of inferring attribute weights in Pro-
cedure P1. PS and PD are two sets of similar and dissimilar
pairs of nodes, respectively (P1 Line 1). In our setting, all
pairs of exemplar nodes constitute PS (P1 Line 2). We cre-
ate PD by randomly drawing pairs of nodes that do not
belong to the exemplar set (P1 Lines 3-7).

We remark that in creating PD, we may also obtain sam-
ples similar to those in PS since these draws are random.
To alleviate the affect of such draws, we keep the size of PD
sufficiently large. This assumes that the number of dissim-
ilar pairs is substantially larger than the number of similar
pairs in the original distribution. This a suitable assump-
tion, given that the number of “focused” clusters for any
particular user-preference is likely small. Thus, we make
the size of PD be |F | times larger than that of PS (P1 Line
7). This also ensures that the data size exceeds dimension
size, and that the learning task is feasible.

Moreover, in inferring attribute weights we learn a diago-
nal A matrix (P1 Line 9). The reason for this choice is two-
fold. First, individual weights for attributes provide ease of
interpretation. Second, learning a diagonal A is computa-
tionally much more tractable (especially in high dimensions)
than learning a full one, since the latter requires solving a
program with a semi-definite constraint. Of course if desired,
one can instead learn a full matrix (in low dimensions).

3.2.2 Focused Cluster Extraction
Having determined attribute weights β, we extract the

focused clusters of interest. The main idea in“chopping out”
focused clusters from G is to first identify good candidate
nodes that potentially belong to such clusters, and then to
expand around those candidate nodes to find the clusters.
Details are given in Algorithm A1, which we describe below.

The process of finding good candidate sets to expand is de-
tailed in Procedure P2. Intuitively, nodes in focused clusters
have high weighted similarity to their neighbors. Therefore,
we first re-weigh the edges E by the weighted similarity of

Procedure P1 InferAttributeWeights
Input: exemplar set of nodes Cex
Output: attribute weights vector β

// generate similar and dissimilar node pairs
1: Similar pairs PS = ∅, Dissimilar pairs PD = ∅
2: for u ∈ Cex, v ∈ Cex do PS = PS ∪ (u, v) end for
3: repeat
4: Random sample u from set V \Cex
5: Random sample v from set V \Cex
6: PD = PD ∪ (u, v)
7: until d|PS | dissimilar pairs are generated, d = |F |
8: Oversample from PS such that PS = PD
9: Solve objective function in Equ. (1) for diagonal A

10: return β = diag(A)

their end nodes (P2 Lines 2-4), induce G on the edges with
notably large weights1 (P2 Line 5), and consider the nodes in
the resulting connected components as our candidate nodes
(P2 Lines 6-7). We call each such component a core set.

Next, we expand around each core by carefully choosing
new nodes to include in the cluster and continue expanding
until there exist no more nodes that increase the quality of
the cluster. There exist several measures of cluster quality
including modularity and cut size [24]. In this work, we use
conductance [3] as it accounts for both the cut size as well
as the total volume/density retained within the cluster. The

weighted conductance φ(w)(C,G) of a set of nodes C ⊂ V
in graph G(V,E, F) is defined as

φ(w)(C,G) =
Wcut(C)

WV ol(C)
=

∑
(i,j)∈E,i∈C,j∈V \C

w(i, j)∑
i∈C

∑
j,(i,j)∈E

w(i, j)

where WV ol(C) is the total weighted degree of nodes in C.
The lower the conductance of a cluster, the better its quality
is with few cross-cut edges and large within-density.

The expansion operation is presented in Procedure P3.
First, we enlist all their non-member neighbors as the can-
didate set (P3 Line 4). For each candidate node n, we com-

pute the difference ∆φ
(w)
n in cluster conductance if n was

to be added to C (P3 Lines 6-16). If there exist any node
with negative ∆ (i.e., node improves conductance), we pick
the best n with the minimum (i.e., largest absolute drop in
conductance) (P3 Lines 17-23). We continue iterating until

no candidate node yields negative ∆φ(w).
The node additions are based on a best-improving search

strategy. While being cautious in which node to add (the
best one at every step), our decisions are greedy. Thus, in
the following step of our algorithm we adopt a retrospective
strategy and check if there exist any nodes in C whose re-
moval would drop conductance, presented in Procedure P4.
We repeat the node addition and removal iterations until
convergence, that is, when the conductance stops changing
(A1 Lines 7-12).

We remark that our algorithm is guaranteed to converge;
as the (weighted) conductance of a cluster is lower-bounded

1To identify such edges, we use hypothesis testing. We first find
the top few most weighted edges, and bootstrap a Normal distri-
bution. We then progressively subject the remaining edges to a
membership-test and consider only those that pass the test. Ev-
ery time an edge passes the test, model parameters are updated.

Algorithm A1 FocusCO: Focused Clusters&Outliers

Input: attributed graph G(V,E, F), exemplar nodes Cex
Output: focused clusters C and outliers O
1: Cores← FindCoreSets(G(V,E, F), Cex)
2: C = ∅, O = ∅
3: for each core i ∈ Cores do
4: C ← Seeds(i).getNodes()
5: BSN = ∅ // holds all Best Structural Nodes to add

6: φ
(w)
curr ← φ(w)(C,G)

7: repeat

8: φ
(w)
init ← φ

(w)
curr

9: (C,BSN, φ
(w)
curr)← Expand(G,C,BSN, φ

(w)
curr)

10: (C, φ
(w)
curr)← Contract(G,C, φ

(w)
curr)

11: BSN ← BSN\C
12: until φ

(w)
init = φ

(w)
curr

13: C ← C ∪ C, O ← O ∪BSN
14: end for

Procedure P2 FindCoreSets
Input: attributed graph G(V,E, F), exemplar nodes Cex
Output: seed sets to expand as focused clusters
1: β ← InferAttributeWeights(Cex)

// (re)-weigh edges by feature similarity of end-nodes
2: for each (i, j) ∈ E do

3: w(i, j) = 1/(1 +
√

(fi − fj)T diag(β)(fi − fj))
4: end for
5: w′ ← maxw′ w′ /∈ distributionf({w| w ≥ w′})
6: Build induced subgraph g(V ′, E′, F) s.t.
∀u, v ∈ V ′, (u, v) ∈ E, w(u, v) ≥ w′ iff (u, v) ∈ E′

7: return ConnectedComponents(g(V ′, E′, F))

by 0 and we improve (i.e., decrease) the weighted conduc-
tance in every iteration (P3 Line 8, P4 Line 5).2

We omit the details of the ∆ conductance computation for
brevity, but remark that it is an efficient operation. Specif-
ically, the operation of a node u to be added to or to be
removed from a cluster S has complexity proportional to
the degree of u, i.e. O(d(u)). In addition, the total volume
of S is simply increased/decreased by the weighted degree
w(u) of u, when it is added/removed, which takes O(1).

3.2.3 Focused Outlier Detection
Our algorithm also identifies outlier nodes in each focused

cluster along with finding the clusters in a unified fashion.
Our definition of a focused cluster outlier is quite intuitive:
a node that belongs to a focused cluster structurally (hav-
ing many edges to its members), but that deviates from its
members in some focus attributes significantly is an outlier.
To quantify this definition, the main idea is to identify the
best structural nodes BSNs (best in terms of unweighted
conductance) during the course of expansion (P3 Lines 3,
14, 22) and later check if there exist any BSNs which were
not included in the resulting focused cluster (A1 Line 11).

In order to identify the best structural node for a cluster
in each iteration, we need to also track its unweighted con-
ductance. An advantage of our proposed approach is that
the overhead of computing the unweighted ∆φ of a node,
in addition to its weighted ∆φ(w), is negligible. The reason

2P4 Line 5 removes a node even if conductance remains the same,
however, the number of such steps is also bounded by cluster size.

Procedure P3 Expand
Input: attributed graph G(V,E, F), focused cluster C, set

BSN , current conductance φ
(w)
curr

Output: a focused cluster C, its best structural nodes

BSN , and its conductance φ
(w)
curr

1: repeat
2: bestNode = NULL,
3: bestStructureNode = NULL
4: candidateNodes← neighbors(C)

5: ∆φ
(w)
best = 0, ∆φbest = 0

6: for each node n in candidateNodes do
7: ∆φ

(w)
n ,∆φn ← Get∆Conductance(G,C, n,add)

8: if ∆φ
(w)
n < ∆φ

(w)
best then

9: ∆φ
(w)
best = ∆φ

(w)
n

10: bestNode← n
11: end if
12: if ∆φn < ∆φbest then
13: ∆φbest = ∆φn
14: bestStructureNode← n
15: end if
16: end for
17: if bestNode 6= NULL then
18: C ← C ∪ bestNode
19: φ

(w)
curr = φ

(w)
curr + ∆φ

(w)
best

20: end if
21: if bestStructureNode 6= NULL then
22: BSN ← BSN ∪ bestStructureNode
23: end if
24: until bestNode = NULL
25: return C,BSN, φ

(w)
curr

is that, to compute ∆φ, we simply count the total number,
instead of the total weight, of those same edges that are
involved in the computation of ∆φ(w). As such, both con-
ductances can be computed efficiently at the same time and
the best structural node and the best focused cluster node
can be identified simultaneously.

3.2.4 Complexity analysis
Given an attributed graph G(V,E, F) and the exemplar

nodes Cex, we first create similar and dissimilar node pairs
which we use to infer the attribute weights. As the opti-
mization objective we adopt is convex and as we aim for
a diagonal solution, local-optima-free gradient descent tech-
niques will take O(d

ε2
) for an ε-approximate answer [6].

To determine good core sets to expand clusters around, we
re-weigh the graph edges by the weight vector β with com-
plexity O(dm). Assuming β is sparse with only a few non-
zero entries for focus attributes, the multiplicative factor
becomes effectively constant yielding a complexity of O(m).
Next, we identify the top-k edges with largest weights on
which we induce G to find the core sets (k � m). To do so,
we use a min-heap to maintain this top set while making a
single pass over the edges. This requires O(m log k) in the
worst case, assuming each edge triggers an insertion into the
heap. Using these top-k edges we estimate the parameters
of a Normal distribution, which takes O(k). Next we make
another pass over the edge set and subject each to a mem-
bership test against the Normal model in O(m). We induce
the graph on all the edges that pass the test, the connected
components of which yield the core sets. Overall complexity
for finding the core sets is thus O(m log k).

Procedure P4 Contract
Input: attributed graph G(V,E, F), focused cluster C, cur-

rent conductance φ
(w)
curr

Output: a focused cluster C and its conductance φ
(w)
curr

1: repeat
2: removed← false
3: for each node n in C do
4: ∆φ

(w)
n ← Get∆Conductance(G,C, n,remove)

5: if ∆φ
(w)
n ≤ 0 then

6: C ← C\n
7: φ

(w)
curr = φ

(w)
curr + ∆φ

(w)
n

8: removed← true
9: end if

10: end for
11: until removed = false

12: return C, φ
(w)
curr

For expanding a focused cluster, we enlist all the non-
member neighbors as the candidate set C and evaluate their
weighted ∆ conductance. As discussed in §3.2.2, the com-
plexity is

∑
n∈C d(n). Since C ⊆ V , it is equivalently O(m).

As we add one node at each iteration, the total complexity
becomes O(|S|m) where |S| is the size of the focused clus-
ter, and |S| � n. Also note that focused clusters can be
extracted around each core set in parallel.

We remark that scanning candidate set C for picking the
best node takes O(m) in the worst case. Assuming small
rounded focused clusters, one can expect that not all edges
of G are “touched” by C’s neighbors. This implies sub-linear
performance for expanding a single cluster in practice.3

3.2.5 Variants of FocusCO

We conclude this section by briefly discussing a couple of
variants of our problem setting and how we can adapt our
proposed algorithm to handle these variants.

In one variant of the problem, the user might explicitly
ask for the exemplar nodes s/he provided to be included in
the focused clusters. While it is highly likely that most of
the exemplar nodes will indeed be part of the focused clus-
ters found in Algorithm 1, inclusion of all is not guaranteed.
To handle this setting, we can include the connected com-
ponents induced on the exemplar nodes as additional core
sets (in P2 Line 7) and later never allow the removal of any
exemplar node in extracting the clusters (in P4 Lines 5-9).

Another variant involves the user asking for a sparser rep-
resentation of the focus attributes. In other words, it may
be practical to define the similarity among the exemplar
nodes using as few attributes as possible, especially in high
dimensions. In such a case, we can tune the regularization
constant γ that we introduced in Equation (1) for learning
the weight vector β. Specifically, a large γ drives the second
term in the objective to become large. To make the pairs
in PD as dissimilar as possible, a dense β is learned. The
smaller the γ gets, the less the emphasis on the dissimilar
pairs becomes, and a sparser weight vector is learned.4

In other settings, the user may choose to explicitly provide
the set of dissimilar nodes or the attribute relevances (i.e.,
the β vector) directly, which can be incorporated trivially.

3Different ways of choosing the core sets (e.g., only using user-
provided nodes) can remove the dependence on processing the
entire graph, and allow FocusCO to run in sublinear time.
4For γ = 0, constraint on PD is completely waived and β is zero.

4. EVALUATION
In this section we thoroughly evaluate our method5 on

clustering quality, outlier detection performance, and run-
time on synthetic and real-world networks. None of the ex-
isting methods address the focused clustering and outlier
detection problem we pose in this paper. Nevertheless, we
compare to two representative techniques, CODA [14] and
METIS [19]. CODA is a graph clustering and outlier detec-
tion algorithm on attributed graphs, and treats all attributes
equally. The clustering is not steered by user-preference, as
such, it clusters the whole graph. METIS is a graph par-
titioning algorithm and does not provide outlier detection.
Both methods expect the number of clusters as input.

To evaluate focused clustering quality, we use the Nor-
malized Mutual Information (NMI), a widely used metric
for computing clustering accuracy of a method against the
desired ground truth [21]. The ground truth in our case
is the true focused clusters that are relevant to a particular
user’s interest. The best NMI score is 1. We evaluate outlier
detection performance by the F1-score; the harmonic mean
of precision and recall for a known set of outliers.

4.1 Results on Synthetic Graphs

4.1.1 Data generation
To study the behavior of our algorithm compared to other

approaches on graphs with ground truth (focused) clusters
and outliers, we generated synthetic graphs with various
number of clusters focusing on different subsets of the at-
tribute space, containing various number of clusters, and
with varying size ranges. Our generative algorithm is based
on the planted partitions model [9].

Simply put, given the desired number of nodes in each
cluster we split the adjacency matrix into blocks defined by
the partitioning. For each block Bij , we choose a probabil-
ity pij . Using a random draw process we assign a 1, i.e. an
edge, for each possible entry in the block, and 0 otherwise. In
other words, pij specifies the density of each block. The di-
agonal blocks constitute the actual clusters and off-diagonal
entries yield the cross edges. Unless otherwise noted, we set
pii = 0.35 and 0.10 ≤ pij ≤ 0.25, i 6= j.

We assign the graph clusters generated, either to one of
two focus attribute sets (i.e. focus-1 or focus-2) or as un-
focused. Please note that in real-world graphs, we expect
to see more than two focuses on a variety of attribute sub-
spaces. For each focused cluster, one of the two subsets
(focus-1 or focus-2) is chosen as focus attributes. For each
attribute i in this subset the attribute values are drawn from
a Normal distribution N(µi, σ) with uniform random mean
µi ∈ [0, 1] and a variance σ = 0.001. The variance is specifi-
cally chosen to be small such that the clustered nodes“agree”
on their focus attributes. The rest of the attributes, on
the other hand, are drawn from a Normal distribution with
much larger variance; N(0, 1). In contrast, all of the at-
tribute values of nodes in unfocused clusters are drawn from
large-variance Normals.

Focused outliers are generated by randomly choosing mem-
bers from each focused cluster and“deflating”(depending on
the setting) one or more of their focus attributes i; by re-
placing them by a value drawn from N(µi, σ = 1).

5A FocusCO implementation is available at
http://bit.ly/focusedclustering

10 20 40 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NumberpofpAttributes

N
M

I

Effectpofpincreasingpattributepspacepsize

FocusCO
FocusCO:puniformpβ
CODA:p0.5
CODA:p0.1
CODA:p0.05
METISpSw(
METISpSuw(

Figure 2: NMI vs. attribute size |F |. Results aver-
aged over 100 runs, bars depict 25-75%.

4.1.2 Clustering quality
To study the clustering performance, we generated graphs

with 3 focused clusters that are coherent in focus-1 attributes,
3 focused clusters that are coherent in focus-2 attributes,
and 3 unfocused clusters, for a total of 9 clusters. The task
is to extract the focus-1 clusters with the respective user
preference.

For comparison we use CODA and METIS, which do not
perform focused cluster extraction. They both partition the
entire graph, and thus, we explicitly need to select the 3
best clusters that these methods returned, by measuring the
overlap among the clusters they produced to the ground-
truth clusters. Since both methods require the number of
clusters to be provided as input, we asked for the correct
number of (9) clusters, i.e. best performance, although in
practice this number is hard to choose as the number of
hidden clusters is unknown, especially for large graphs.

METIS is a graph partitioning algorithm that does not
handle attributes. In one version of METIS, we ignore the
attributes and use only the graph structure. In a second
version, we incorporate attribute information by weighing
the edges of the graph (using β) by the attribute similarity
of their end nodes. We call these two versions as weighted
METIS (w) and unweighted METIS (uw). While CODA can
perform clustering for attributed graphs, a main challenge
with it is to carefully choose a λ parameter that controls the
trade-off between structural and attribute similarity of the
nodes. In our experiments we report results using 3 different
λ settings, 0.05, 0.1, and 0.5, for CODA.

Figure 2 shows the clustering performance (mean NMI
over 100 independent runs) of the methods when we increase
the number of attributes while retaining the same number
of (5) focus attributes for the focused clusters. We observe
that FocusCO remains superior to all the other approaches
in the face of irrelevant attributes for the clustering task.

To illustrate the importance of weight learning, we also
study the performance of a variant of our FocusCO, in
which we use a uniform attribute weight vector β, i.e., we
bypass weight learning and directly perform cluster extrac-
tion. We observe that the performance of this version of our
algorithm drops quickly with increasing attribute size. Our
analysis suggests that this occurs due to the edge weights
having a more and more uniform distribution when weighted
by using a uniform β, which yields an inferior collection of

http://bit.ly/focusedclustering

10 20 40 80 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ClusterAsize

N
M

I
EffectAofAclusterAsize

FocusCO
CODA:A0.5
CODA:A0.1
CODA:A0.05
METISA(w)
METISA(uw)

[10(10] [10(20] [10(40] [10(80] [10(100]

0

0)1

0)2

0)3

0)4

0)5

0)6

0)7

0)8

0)9

1

Clusterfsizefrange

N
M

I

EffectfoffdifferentfclusterfsizesfinfG

FocusCO
CODA:f0)5
CODA:f0)1
CODA:f0)05
METISfAw:
METISfAuw:

0ES6w 4ES10w 9ES15w 14ES20w 24ES30w 34ES40w 44ES50w

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NumberEofEunfocusedEStotalwEclusters

N
M

I

EffectEofEunfocusedEclusters

FocusCO
CODA:E0.5
CODA:E0.1
CODA:E0.05
METISESww
METISESuww

(a) NMI vs. cluster size (b) NMI vs. variable cluster size (c) NMI vs. number of unfocused clusters

Figure 3: NMI clustering quality results on synthetic graphs, for FocusCO, CODA with three different λ
parameter settings, and METIS on un/weighted graphs; (a) for changing cluster sizes (all clusters have the
same size), (b) for changing cluster size variance (graph has variable size clusters), and (c) for increasing
number of unfocused clusters. FocusCO performs the best in all scenarios across a wide range of settings.
Symbols depict the mean over 100 runs, bars depict 25-75%.

core sets around which we find clusters. Thus, we proceed
with studying the performance of our original FocusCO.

Next in Figure 3 we show the clustering performance of
the methods under various other settings. In (a), we increase
the cluster size where we create clusters of the same size in
the graph. In (b), we allow the graph to contain variable
size clusters and increase the variance of the cluster sizes,
by randomly drawing them from increasing ranges. Finally
in (c), we increase the number of unfocused clusters in the
graph, while keeping the number of focused clusters fixed.6

Notice that recovering a few focused clusters of interest in
the existence of more unfocused clusters is an increasingly
challenging problem.

From all these setups, we observe that FocusCO out-
performs the competing methods and their variants in all
scenarios. Weighted METIS seems to achieve slightly better
performance than the unweighted version, although the dif-
ferences are not significant. CODA’s accuracy is the lowest,
as the homophily assumption it is making does not hold in
the full attribute space. We note that in (c), one param-
eterization of CODA (λ = 0.5) achieves as high accuracy
as METIS for small number of clusters. Its accuracy, how-
ever, quickly drops when many more unfocused clusters than
focused ones are introduced. Other two parameterizations
give low accuracy, pointing out the sensitivity of CODA to
the choice of its parameter.

Finally, we study the clustering performance when focus-
1 and focus-2 clusters share common focus attributes. We
create 20 node attributes out of which the first 10 are as-
signed as focus-1 attributes and the next 10 are assigned as
focus-2 attributes to the respective clusters. Then, we grad-
ually overlap the focus attributes until they are the same set
of 10 for all the focused clusters. Figure 4 shows that the
performance of FocusCO remains stable and high across all
overlaps. The accuracy of METIS (w) is also quite stable
and stays around 0.6 (METIS (uw) is not expected to be
affected in this setup). We also notice that CODA’s per-
formance starts increasing after more than 50% of the focus
attributes overlap. At 100%, there is essentially only a single
focus in the graph, where CODA’s performance peaks. This

6To ensure sparsity of the growing graphs, we set pij = 0.02.

suggests that CODA is more suitable for attributed graphs
with uniform graph clusters and would suffer when the graph
contains many heterogeneous focused clusters (with multiple
focuses) as we would expect to see in real networks.

0OM 10OM 20OM 30OM 40OM 50OM 60OM 70OM 80OM 90OM 100OM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PercentMofMoverlappingMfocusMattributes

N
M

I

EffectsMofMfocusMattributesMoverlapping

FocusCO
CODA:M0.5
CODA:M0.1
CODA:M0.05
METISM:wT
METISM:uwT

Figure 4: Clustering performance by increasing
overlap on focus attributes of different focused clus-
ters. (mean NMI over 100 runs, bars: 25-75%).

These results show the robustness of FocusCO, where its
performance remains quite stable across different settings.
They also illustrate that the general graph clustering meth-
ods are not suitable for our focused clustering problem, as
their performance is (i) sensitive to the (parameter) setting,
and (ii) lower than that of FocusCO at all settings.

4.1.3 Outlier detection
Next we evaluate outlier detection performance. Since

METIS does not detect outliers, we compare to CODA. In
addition to its λ parameter, CODA expects a parameter r
that controls the top percentage of nodes to be returned
as outliers. We report experiments for the cross-product of
λ = {0.05, 0.1, 0.5} and r = {1%, 5%}.

In the first setup, we study the performance with respect
to the severity of outliers. If an outlier deviates in a larger
number of focus attributes from its cluster members, it be-
comes more severe in outlierness, but easier to detect. To
create outlier nodes with higher outlierness, we gradually in-

crease their number of focus attributes that we deflate. Fig-
ure 5 shows the F1-score and precision (averaged over 100
runs). We observe that FocusCO achieves superior perfor-
mance to CODA in both metrics. We can also notice the
increase in detection accuracy of FocusCO with increas-
ing number of deflated focus attributes (i.e., increasing ease
in spotting outliers), as we expected, while the same trend
is not apparent for CODA potentially because it does not
calibrate to attribute subspaces.

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

NumberAofAfocusAattributesAdeflated

F
1

OutlierADetectionAbyASeverityAofAOutlier

FocusCO

CODA:A0.5,A1%

CODA:A0.5,A5%

CODA:A0.1,A1%
CODA:A0.1,A5%

CODA:A0.05,A1%

CODA:A0.05,A5%

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numberyofyfocusyattributesydeflated

P
re

ci
si

on

OutlieryDetectionybyySeverityyofyOutlier

FocusCO

CODA:y0.5,y1A

CODA:y0.5,y5A

CODA:y0.1,y1A

CODA:y0.1,y5A

CODA:y0.05,y1A

CODA:y0.05,y5A

(a) F1-score (b) precision

Figure 5: Outlier detection performance by increas-
ing number of deflated focus attributes.

We further analyze the outlier detection accuracy with re-
spect to the attribute space size. In Figure 6 we observe that
CODA’s performance starts dropping after a certain number
of attributes, where identifying descriptive focus attributes
becomes more and more crucial to accurately spot the out-
liers that are hidden in different community structures. The
performance of FocusCO on the other hand remains quite
stable and superior to CODA.

10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

Total:number:of:attributes

F
1

Effect:of:increasing:number:of:dimensions

FocusCO
CODA::0.5,:1%
CODA::0.5,:5%
CODA::0.1,:1%
CODA::0.1,:5%
CODA::0.05,:1%
CODA::0.05,:5%

10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TotalFnumberFofFattributes

P
re

ci
si

on

EffectFofFincreasingFnumberFofFdimensions

FocusCO
CODA:F0.5,F1:
CODA:F0.5,F5:
CODA:F0.1,F1:
CODA:F0.1,F5:
CODA:F0.05,F1:
CODA:F0.05,F5:

(a) F1-score (b) precision

Figure 6: Outlier detection performance by increas-
ing number of attributes |F |.

Finally, we note that the precision of FocusCO is often
higher than its recall, while both being superior to CODA’s.

4.1.4 Scalability
Finally we study the scalability of the methods. Figure

7 shows the running times with increasing number of edges
and attributes. CODA’s inference techniques are compu-
tationally demanding, and thus, its running time is much
higher than other methods. METIS on the other hand uses
an extremely efficient heuristic and achieves low running
times. We report the average cluster extraction time for
FocusCO in addition to total running time, as each cluster
extraction can be performed in parallel. In fact, we notice
that while its total running time increases by graph size, av-
erage time to extract a single cluster remains stable and low.
In such a case, FocusCO is also comparable to METIS.

0 0w5 1 1w5 2 2w5 3 3w5

xD10
5

0

5

10

15

20

25

30

35

40

45

50

NumberDofDedgesD|E|

T
im

eD
as

ec
l

EffectDofDedgesDonDruntime

CODA:Dλ=0w5Ik=9

FocusCODatotall
FocusCODa/clusterl
METISDauwlIDk=9

10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

NumberCofCattributes

T
im

eC
9s

ec
F

EffectCofCattributeCsizeCgrowthConCruntime

CODAMCλ=0S5Mk=9
FocusCOC9totalF
FocusCOC9/clusterF
METISC9uwFMCk=9

(a) time vs. #edges (b) time vs. #attributes

Figure 7: Running time scalability w.r.t. (a) num-
ber of edges |E| and (b) number of attributes |F |.

4.2 Results on Real-world Graphs

4.2.1 Dataset description
We use several attributed networks obtained from real-

world data to evaluate our approach. Disney is an Ama-
zon co-purchase graph of Disney movies.7 Each movie has
28 attributes such as price, rating, number of reviews, etc.
PolBlogs is the citation network among a collection of on-
line blogs that discuss political issues. Attributes are the
keywords in their text. DBLP and 4Area are two different
co-authorship networks of computer science authors. The
attributes reflect the conferences which an author has pub-
lished in broadly (DBLP), or just in databases, data min-
ing, information retrieval, and machine learning (4Area).
Finally, we have the friendship relations of YouTube users
and the attributes depict their group memberships. Dataset
statistics are given in Table 2.

Table 2: Real-world datasets used in this work. Av-
erage running time in seconds per cluster ± std (avg.
number of clusters extracted).

Dataset |V | |E| |F | Running time (sec)
Disney 124 333 28 0.0017 ± 0.0022 (8.3)
PolBlogs 362 1288 44839 0.0040 ± 0.0052 (2.8)
4Area 27199 66832 4 0.0052 ± 0.0018 (3390.9)
DBLP 30599 146647 18 0.2868 ± 0.0630 (761.4)
YouTube 77381 367151 30087 2.9643 ± 0.7201 (257.4)

4.2.2 Running time
Our real datasets come from various domains and have

different node, edge, and attribute counts. Here we report
running time experiments to demonstrate the efficiency of
our method on these real graphs.

We setup 10 runs of our method on each graph, each with
a randomly sampled 1% of the attributes as the focus at-
tributes. Each run returns a different number of clusters,
thus we report the running time per cluster averaged over
the 10 runs and their standard deviations in Table 2. Notice
that similar to Figure 7, the running times are quite low.
In particular, the average time to extract a cluster in our
largest graph YouTube takes around 3 seconds.

4.2.3 Case Studies
The first case study we consider is finding two types of

focused clusters in Disney. In one instance, a user wants
to understand how the popularity of a movie influences its

7
http://www.ipd.kit.edu/~muellere/consub/

http://www.ipd.kit.edu/~muellere/consub/

Figure 8: Two sets of focused clusters in Disney. Left clusters focus on attributes related to popularity (sales
rank, number of reviews, etc.) Nodes in right clusters share similar ratings. Outliers are marked with red
and illustrated. See text for discussion. (best viewed in color)

community in a co-purchase network. The user decides
that the product’s popularity is related to the features Num-
ber_of_reviews and Sales_rank, and so chooses a few prod-
ucts which have similar values in those attributes. Fo-
cusCO then uses this exemplar set Cex to learn an attribute
weighting βu. This βu reflects the user’s intent, and has
also captured another dimension correlated with those at-
tributes; Number_of_different_authors.

Several extracted focused clusters for this task are shown
on the left in Figure 8. In general, the discovered clusters
consist of movies of similar age and acclaim. The first fo-
cused cluster (blue) reflects traditional Disney classics such
as Robinhood. Its outlier is a sequel (An Extremely Goofy

Movie) that is much less popular than the other classics in
the cluster. The second community (green) focuses on pop-
ular older Disney movies, and has outliers such as American
Legends and again the Goofy sequel, that are much less
popular. The third cluster (orange) overlaps with the first
focused cluster. It is a subset of the classic Disney movies
of the larger cluster that were predominantly starred by an-
imals (e.g., The Rescuers). Its cluster outlier is The Black

Caldron, which although of similar vintage, starred a human
protagonist and was much less popular.

In the next instance, a user wants to examine how the
differences in the distribution of consumer ratings affect the
Disney clustering. In this case, the focused clusters repre-
sent collections of movies that are similarly rated (e.g., Pixar
films or animated Disney classics). The outliers represent
movies which are rated differently from the movies they are
purchased with, and reflect consumer opinion. The results
are shown in the right of Figure 8. The first focused clus-
ter (purple) represents traditional Disney classics. Its outlier
(which was included in the previous focused popularity clus-
ter) is the movie A Goofy Movie which although reasonably
popular, is not as high rated. The second cluster (green) is
the Pixar community, featuring high-rated movies like Toy

Story. Its focused outlier is the live action version of 101

Dalmatians, a movie which is rated quite differently than
most Pixar films. The third cluster consists of renowned
Disney films such as Fantasia. It also contains an outlier,
the Spanish version of Beauty and the Beast.

We consider a second case study on PolBlogs, where a
user seeks to understand the difference between blog content

simbaud.blogspot.com

stevegilliard.blogspot.com

markarkleiman.com

prospect.org/weblog

toteota.blogspot.com
digbysblog.blogspot.com

alternateworlds.blogspot.com

rising-hegemon.blogspot.com

capitolbuzz.blogspot.com

washingtonmonthly.com

warandpiece.com

davidsirota.com

imao.us

scottcsmith.net

freedomofthought.com

rhymeswithright.mu.nu

indcjournal.com

peacenik WaaseRiposte

Figure 9: A focused cluster of liberal blogs in Pol-
Blogs with a focus on Iraq war debate. Outlier David

Sirota does not mention Waas in his posts.

written by different liberal bloggers during the height of the
Iraq war controversy in 2005. Using several liberal blogs
as an example set, the user learns a βu which represents
the focus of the bloggers (as shown in the top of Figure
9, text size of features proportional to weight). It contains
words such as eriposte, an active liberal blogger, peacenik,
a term for an anti-war activist, and most strongly Waas.
Murray Waas was an independent journalist praised for his
investigative journalism of the Bush administration.8 The
focused community outlier for this group is David Sirota, a
well-connected liberal blogger who did not explicitly mention
Waas in the dataset.

The third case study we consider is on the 4Area
dataset. Here a user wants to understand who the out-
liers are in the data mining co-authorship network. S/he
learns a βu using {Christos Faloutsos, Jiawei Han, Jon

M. Kleinberg, Jure Leskovec, Andrew Tomkins} as in-
put, who focus primarily on data mining. One of the focused
clusters found is around data mining researchers mostly in
industry, as shown in Figure 10. The outlier is Cameron

Marlow, the former head of Facebook’s data science team,
who collaborated with the researchers in the data mining
community but published on information retrieval.

8
http://www.huffingtonpost.com/jay-rosen/

murray-waas-is-the-woodwa_b_18875.html

http://www.huffingtonpost.com/jay-rosen/murray-waas-is-the-woodwa_b_18875.html
http://www.huffingtonpost.com/jay-rosen/murray-waas-is-the-woodwa_b_18875.html

JohnBA.BTomlin

RaviBKumar

NadavBEiron

RaviBSundaram

RamanathanBV.BGuha

KunalBPunera

DavidBP.BWilliamson

DanielBGruhl

SujuBRajan

LarsBBackstrom

JennyBEdwards

SridharBRajagopalan

AnantBJhingran
JasonBY.BZien

PratapBKhedkar

KevinBS.BMcCurley

JasmineBNovak
BoBPang

StephenBDill

D.BSivakumar
SreenivasBGollapudi

JeffreyBGoh

DavidBGibson

AndrewBTomkins

DavidBLiben-Nowell

PavelBA.BDmitriev

TapasBKanungo

Cameron Marlow

DataBMining

Figure 10: A focused cluster of data mining re-
searchers in 4Area. Outlier Cameron Marlow closely
publishes with them, but on information retrieval.

5. CONCLUSION
In this work we introduce a new problem of finding focused

clusters and outliers in large attributed graphs.
Given a set of exemplar nodes that capture the user in-

terest, our goal is two-fold: 1) “chop out” clusters of similar
nodes that are densely connected and exhibit coherence in a
subset of their attributes, called the focus attributes, and 2)
identify focused outliers, i.e. nodes that belong to a focused
cluster in network structure but show deviance in some focus
attribute(s). We propose an efficient algorithm that infers
the focus attributes of interest to the user, and that both
extracts focused clusters and spots outliers simultaneously.
Experiments on synthetic and real-world graphs show the
effectiveness and scalability of our approach and that the
existing graph clustering and outlier detection techniques
are not suitable to handle the newly posed problem.

Acknowledgments
The authors thank the anonymous reviewers for their help-
ful comments. This material is based upon work supported
by the ARO Young Investigator Program grant with Con-
tract No. W911NF-14-1-0029, an ONR SBIR grant under
Contract No. N00014-14-P-1155, NSF Grant IIS-1017181,
the Stony Brook University Office of Vice President for Re-
search, the Young Investigator Group program of KIT as
part of the German Excellence Initiative, and by a post-
doctoral fellowship by the Flanders research foundation
(FWO). Any findings and conclusions expressed in this ma-
terial are those of the author(s) and do not necessarily reflect
the views of the funding parties.

6. REFERENCES
[1] L. Akoglu, M. McGlohon, and C. Faloutsos. OddBall:

Spotting anomalies in weighted graphs. In PAKDD, 2010.

[2] L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos. PICS:
Parameter-free identification of cohesive subgroups in large
attributed graphs. In SIAM SDM, pages 439–450, 2012.

[3] R. Andersen, F. Chung, and K. Lang. Local graph
partitioning using pagerank vectors. In FOCS, 2006.

[4] A. Banerjee, S. Basu, and S. Merugu. Multi-way clustering
on relation graphs. In SIAM SDM, 2007.

[5] S. Basu, I. Davidson, and K. Wagstaff. Clustering with
Constraints: Algorithms, Applications and Theory. 2008.

[6] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, NY, USA, 2004.

[7] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and
C. Faloutsos. Fully automatic cross-associations. In KDD,
pages 79–88, 2004.

[8] A. Clauset. Finding local community structure in networks.
Physical Review E, 72(2):026132, 2005.

[9] A. Condon and R. M. Karp. Algorithms for graph
partitioning on the planted partition model. Random
Struct. Algorithms, 18(2):116–140, 2001.

[10] I. Dhillon, S. Mallela, and D. Modha. Information-theoretic
co-clustering. In KDD, 2003.

[11] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A
min-max cut algorithm for graph partitioning and data
clustering. In ICDM, 2001.

[12] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient
identification of web communities. In KDD. 2000.

[13] J. Gao, H. Cheng, and P.-N. Tan. Semi-supervised outlier
detection. In ACM Symp. on Appl. Comp., 2006.

[14] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han.
On community outliers and their efficient detection in
information networks. In KDD, pages 813–822, 2010.

[15] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low
conductance cuts, and good seeds for local community
methods. In KDD, pages 597–605, 2012.

[16] S. Günnemann, I. Färber, B. Boden, and T. Seidl.
Subspace clustering meets dense subgraph mining: A
synthesis of two paradigms. In ICDM, 2010.

[17] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer.
Co-clustering of biological networks and gene expression
data. In ISMB, pages 145–154, 2002.

[18] P. Iglesias, E. Müller, F. Laforet, F. Keller, and K. Böhm.
Statistical selection of congruent subspaces for outlier
detection on attributed graphs. In ICDM, 2013.

[19] G. Karypis and V. Kumar. Multilevel algorithms for
multi-constraint graph partitioning. In Proc. of
Supercomputing, pages 1–13, 1998.

[20] B. Long, Z. Zhang, X. Wu, and P. S. Yu. Spectral
clustering for multi-type relational data. In ICML, 2006.

[21] C. D. Manning, P. Raghavan, and H. Schtze. Intro to
Information Retrieval. Cambridge University Press, 2008.

[22] F. Moser, R. Colak, A. Rafiey, and M. Ester. Mining
cohesive patterns from graphs with feature vectors. In
SDM, 2009.

[23] E. Müller, P. I. Sanchez, Y. Mülle, and K. Böhm. Ranking
outlier nodes in subspaces of attributed graphs. In ICDE
Workshops, pages 216–222, 2013.

[24] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In NIPS, 2001.

[25] C. C. Noble and D. J. Cook. Graph-based anomaly
detection. In KDD, pages 631–636, 2003.

[26] J. Tang and H. Liu. Unsupervised feature selection for
linked social media data. In KDD, pages 904–912, 2012.

[27] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient
aggregation for graph summarization. In SIGMOD, 2008.

[28] H. Tong and C.-Y. Lin. Non-negative residual matrix
factorization with application to graph anomaly detection.
In SIAM SDM, pages 143–153, 2011.

[29] F. Wang and J. Sun. Distance metric learning in data
mining. In SIAM SDM. Tutorials, 2012.

[30] J. Whang, D. Gleich, and I. Dhillon. Overlapping
community detection using seed set expansion. In CIKM,
pages 2099–2108, 2013.

[31] S. White and P. Smyth. A spectral clustering approach to
finding communities in graph. In SDM, 2005.

[32] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell.
Distance metric learning with application to clustering with
side-information. In NIPS, pages 505–512, 2002.

[33] J. Yang and J. Leskovec. Overlapping community detection
at scale: a nonnegative matrix factorization approach. In
WSDM, pages 587–596, 2013.

[34] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based
on structural/attribute similarities. PVLDB, 2(1):718–729,
2009.

	Introduction
	Related Work
	Method FocusCO
	Problem Formulation
	Approach and Algorithm Details
	Inferring Attribute Relevance
	Focused Cluster Extraction
	Focused Outlier Detection
	Complexity analysis
	Variants of FocusCO

	Evaluation
	Results on Synthetic Graphs
	Data generation
	Clustering quality
	Outlier detection
	Scalability

	Results on Real-world Graphs
	Dataset description
	Running time
	Case Studies

	Conclusion
	References

