Focused Clustering and Outlier Detection in Large Attributed Graphs

ACM SIG-KDD August 26, 2014

Attributed Graphs

- Attributed graph: each node has
 1+ properties
- Examples:
 - Age
 - School
 - Relationship Status

2

Focused Mining of Attributed Graphs

- Numerous attributes (ex: Facebook profiles)
- Many irrelevant for most queries
 - Ex: When trying to sell mortgages

 - Not Useful: Hair Color, # Apps Installed
 - Ex: When trying to sell make up

 - Not Useful: Shoe Size

Users have a Focus \rightarrow Algorithms need a Focus too!

Adding Focus to Algorithms

- Users provide examples of the kind of similarity they are interested in.
- We infer the similarity function that matters to them.

Outline

Introduction

New Problem:

Focused Clustering & Outliers

- Our Approach: FocusCO
- Evaluation
- Conclusion

5

Focused Clusters and Outliers: Problem

Given

- 1) a graph w/ node attributes,
- 2) exemplar nodes by the user
- Infer attribute weights/relevance Extract focused clusters:
 - 1) dense in structure,
 - 2) coherent in "heavy" attributes (called the "focus")

Detect focused outliers:

*) nodes deviating in focus attribute values

An Example

- Users provide examples of nodes they consider similar.
 - Ex: 'Yann LeCun' and 'Foster Provost'
- We learn a focus
 - Education Level
 - Location
- We extract clusters
 - which agree with the focus
- We detect outliers
 - which don't agree with focus

Related Work

	Graph Clustering	Attributed Graphs	Attribute Subspace	User Preference	Outlier Detection
METIS, Spectral	\checkmark				
Parallel Nibble, BigClam	\checkmark				
CoPaM, Gamer	\checkmark	\checkmark	\checkmark		
CODA	\checkmark	\checkmark			\checkmark
GOutRank, ConSub		✓	✓		\checkmark
FocusCO	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

8

Focus attribute inference

Input: Set of similar nodes, C_{ex}

1. Construct a set of similar pairs, P_S

2. Construct a set of dissimilar pairs, P_D

Randomly sample pairs (u,v)

3. Learn a distance metric between $\rm P_{S}$ and $\rm P_{D}$

FocusCO: Cluster Extraction

- Local clustering algorithm
 - Not cluster whole graph
- Expands a cluster around a starting set
- Two procedures:
 - Finding good candidate sets to start at
 - 2. Growing clusters

Finding nodes to cluster around

1.) We reweigh the graph using the focus

for each $(i, j) \in E$ do

 $w(i,j) = 1/(1 + \sqrt{(\boldsymbol{f_i} - \boldsymbol{f_j})^T diag(\boldsymbol{\beta})(\boldsymbol{f_i} - \boldsymbol{f_j})})$

2.) We keep only highly weighted edges

3.) The connected components are our seeds

Growing a Focused Cluster

1. Clustering objective: conductance $\phi^{(w)}$ weighted by focus

$$\phi^{(w)}(C,G) = \frac{W_{cut}(C)}{WVol(C)}$$

2. At each step in cluster expansion:

- 2.1 Examine boundary nodes
- 2.2 Add node with best $\Delta \phi^{(w)}$
- 2.3 Record best structural node

Focused Outlier

3. Focused Outliers: left out best structural nodes

Experiment set up

- Synthetic and Real World Graphs
- Performance measures:
 - Cluster quality: NMI
 - Outlier accuracy: precision, F1
- Compared to:
 - CODA [Gao+'10]
 - METIS (no outlier detection) [Karypis+'98]

Focused clustering performance

9 clusters (3 focus1 + 3 focus2 +3 unfocused). 5 focus attributes.

Focused clustering performance

Outlier detection performance

deflated focus attributes increased (easier) from left to right

DBLP co-authorship graph

Summary

A new graph mining paradigm where the **focus** steers graph mining according to user preference.

A new problem formulation **Focused C**lustering & **O**utlier detection

Bryan Perozzi (bperozzi@cs.stonybrook.edu)