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Features From Graphs

A first step in machine learning for graphs is to

extract graph features:

e node: degree

e pairs: # of common neighbors
e groups: cluster assignments

e Anomaly Detection

e Attribute Prediction
> @ Clustering
e Link Prediction

Adjacency Matrix

<
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What is a Graph Representation?

We can also create features by transforming the
graph into a lower dimensional latent
representation.

Latent Dimensions

o)

|V] d << |V]|

e Anomaly Detection

e Attribute Prediction
>e Clustering

e Link Prediction
o

Adjacency Matrix
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‘ DeepWalk

DeepWalk learns a latent representation of
adjacency matrices using deep learning
techniques developed for language modeling.

Latent Dimensions

DeepWalk >
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e Anomaly Detection

e Attribute Prediction
>e Clustering

e Link Prediction
o

Adjacency Matrix
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Visual Example

On Zachary’s Karate Graph:
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Advantages of DeepWalk

e Scalable - An online algorithm that does not
use entire graph at once

e \Walks as sentences metaphor

e \Works great!

e Implementation available: bit.ly/deepwalk

Adjacency Matrix

V]

Latent Dimensions

DeepWalk >

e Anomaly Detection

e Attribute Prediction
>e Clustering

e Link Prediction
o

d << |V|

Bryan Perozzi q\\\‘ Stony Brook University

DeepWalk: Online Learning of Social Representations



Outline

Introduction: Graphs as Features
Language Modeling

DeepWalk

Evaluation: Network Classification
Conclusions & Future Work

Bryan Perozzi Q\\\\ Stony Brook University DeepWalk: Online Learning of Social Representations



‘Language Modeling

Learning a
representation
means learning a
mapping function
from word co-
occurrence
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‘World of Word Embeddings

This is a very active research topic in NLP.

Importance sampling and hierarchical classification were proposed to speed up training.
[F. Morin and Y.Bengio, AISTATS 2005] [Y. Bengio and J. Sencal, IEEENN 2008] [A. Mnih, G.
Hinton, NIPS 2008]

NLP applications based on learned representations.
[Colbert et al. NLP (Almost) from Scratch, (JMLR), 2011.]

Recurrent networks were proposed to learn sequential representations.
[Tomas Mikolov et al. ICASSP 2011]

Composed representations learned through recursive networks were used for parsing,
paraphrase detection, and sentiment analysis.

[ R. Socher, C. Manning, A. Ng, EMNLP (2011, 2012, 2013) NIPS (2011, 2012) ACL (2012,
2013) ]

Vector spaces of representations are developed to simplify compositionality.
[ T. Mikolov, G. Corrado, K. Chen and J. Dean, ICLR 2013, NIPS 2013]
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Word Frequency in Natural Language
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m Words frequency in a natural
language corpus follows a power

law.

# of Words

Co-Occurrence Matrix

6 ‘Frequlency of Wordl Occurjrence Iin Wikilpedia_

)

planet | night | full | shadow | shine | crescent

moon 10 22 | 43 16 29 12
sun 14 10 4 15 45 0
dog 0 41 2 10 0 0

108 10° 10° 10* 10

Word mention count

(n) Wikipedia Article Text
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‘ Connection: Power Laws

Vertex frequency in random walks on

scale free graphs also follows a power
law.
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'Vertex Frequency in SFG

V71 — Uy — VU — VU — U7 — Vg — <:
V92 — V2 — V3 — VU] — V12 — U3 —

V37 — V34 — Vg — VU1 — V190 — Vg9q —

V73 — Vg4 — VU — VU1 — V12 — v —

Urs — V14 — Vg — U1 — Uiz — vg1 — |

m Short truncated random walks
are sentences in an artificial
language!

Random walk distance is
known to be good features for
many problems

Scale Free Graph

Flrgguency of Vertex Occurrence in Short Random Walks
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(a) YouTube Social Graph
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‘The Cool Idea

Short random walks =
sentences
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‘ Deep Learning for Networks

W’U4 — 4
@
,. 3
_—® ~ Random walks ue | 1] v ——> ?ftflff J
- : i

1 )

@ Input: Graph @ Representation Mapping

V1l W2 V3l |v4 [Us| Vsl V7] U8 06}

08 fgg ® °®

3
-1.0F ® 32 3
1.2+ ..

1.4l

16+
T 2

(v, CrmEEm 181

I I I 1 I
—10 —05 00 0.5 1.0 1.5 2.0 25

(4) Hierarchical Softmax (5) Output: Representation

Bryan Perozzi ‘\\\‘ Stony Brook University DeepWalk: Online Learning of Social Representations



‘ Deep Learning for Networks

@ Input: Graph 9 Representation Mapping
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5
m \We generate”y random walks for each vertex
In the graph.

m Each short random walk has length ¢ .

m Pick the next step uniformly from the vertex
neighbors.

m Example:

Vag — Ugs — V71 — V9qg — Ug — U1 — V17
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‘ Deep Learning for Networks
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‘Representation Mapping

W,U4 =SU4— VU3 — U] — Us— VU] — Uy — U] — Ugg

Wa, = 4 n Map the verte>.< under focus (U1 ) to
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“|1]v—=F"’ g Define a window of size W
5 s

1 d w If W=1and V=713

Maximize: Pr(vs|®(v1))
Pr(vs|®(v1))
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‘ Deep Learning for Networks

W’U4 — 4
3
o Random Wa,kS Uk ]_] Vj — [T j

—> 5 T

1 P

0.6+
S 4
08 Egg ® °®
3
‘1.0t ® =

1.2+ ..
1.4
-1.6F

1.8+

I 1 1 I
1.0 1.5 2 5

(4) Hierarchical Softmax (5) Output: .Rep esentation

I 1 1
-1.0 -05 0.0

Bryan Perozzi ‘\\\‘ Stony Brook University DeepWalk: Online Learning of Social Representations



‘ Hierarchical Softmax

Calculating Pr(vs|®(v1)) involves O(V) operations

for each update! Instead:

e Consider the graph vertices
as leaves of a balanced

U1l (V21 |3l |v4] [Us| Vsl (U7l |Us

binary tree.

e Maximizing Pr(v3|®(v))
IS equivalent to maximizing
the probability of the path
from the root to the node.

{i\i

f specifically, maximizing
Blon) EEEE Pr(right | ®(vy); (")
Each of { }is a Pr(left | ®(v1); )
logistic binary classifier. Pr(left ‘ CD(vl); )
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‘ Le arn Ta g [Mikolov+, 2013]

Learned parameters:

m \ertex representations
m [ree binary classifiers weights

Randomly initialize the representations.

For each { } calculate the loss
function.

Use Stochastic Gradient Descent to update
both the classifier weights and the vertex
representation simultaneously.
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‘ Deep Learning for Networks
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‘Attribute Prediction

The Semi-Supervised Network Classification

problem: Stony Brook
Googlers students

INPUT

A partially labelled graph with node

attributes. B S o
L Iky:? Ll;}yu fd Sd }} |

OUTPUT

lymouth Rock Assurance New

EE* ty Bris worked here
Attributes for nodes which do not con
have them. B Appl b kdr(H t} ds

Enter an employer
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‘Baseﬁnes

=« Approximate Inference Techniques:
o weighted vote Relational Neighbor (WvRN )macskassy+, ‘03]

« Latent Dimensions
1o Spectral Methods
= opectralClustering rrang+ ‘11
= MaxModularity rang+, 09
2 k-means
m EdgeCIuster [Tang+, ‘09]
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'Results: BlogCatalog

Name | BLocCATALOG
|V| 10,312
|| 333,083
V| 39
Labels Interests
% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 0% 90%
DeEepPWALK 36.00 | 38.20 | 39.60 | 40.30 | 41.00 | 41.30 | 41.50 | 41.50 | 42.00
SpectralClustering | 31.06 | 34.95 | 37.27 | 38.93 | 39.97 | 40.99 | 41.66 | 42.42 | 42.62
EdgeCluster 27.94 30.76 31.85 32.99 34.12 35.00 34.63 35.99 36.29
Micro-F1(%) | Modularity 27.35 | 30.74 | 31.77 | 3297 | 34.09 | 36.13 | 36.08 | 37.23 | 38.18
wvRN 19.51 24.34 25.62 28.82 30.37 31.81 32.19 33.33 34.28
Majority 16.51 16.66 16.61 16.70 16.91 16.99 16.92 16.49 17.26
DEEPWALK 21.30 | 23.80 | 25.30 | 26.30 27.30 | 27.60 | 27.90 | 28.20 | 28.90
SpectralClustering 19.14 23.57 | 25.97 | 27.46 | 28.31 | 29.46 | 30.13 | 31.38 | 31.78
EdgeCluster 16.16 19.16 20.48 | 22.00 23.00 23.64 23.82 24.61 24.92
1\[3(‘1‘0—F1(%) Modularity 17.36 20.00 20.80 21.85 22.65 23.41 23.89 24.20 24.97
wvRN 6.25 10.13 11.64 14.24 15.86 17.18 17.98 18.86 19.57
Majority 2.52 2.55 2.52 2.58 2.58 2.63 2.61 2.48 2.62

Table 2: Multi-label classification results in BLocCATALOCG
DeepWalk performs well, especially when labels are
sparse.
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‘Results: Flickr

Name FLICKR

\4 80,513

|E| 5,899,882

V| 195

Labels | Groups
% Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% | 10%
DEEPWALK 32.4| 34.6 35.9 36.7 37.2 37.7 38.1 38.3]| 38.5| 38.7
SpectralClustering | 27.43 | 30.11 | 31.63 | 32.69 | 33.31 | 33.95 | 34.46 | 34.81 | 35.14 | 35.41
Micro-F1(%) | EdgeCluster 25.75 1 28.53129.14 | 30.31 | 30.85 | 31.53 | 31.75 | 31.76 | 32.19 | 32.84
Modularity 22751 25.29 | 27.3 | 27.6|28.051(29.33|29.43|28.89129.17| 29.2
wvRN 1771 14.43 1 15.72 12097 | 19.83 |1 19.42 | 19.22 | 21.25 | 22.51 | 22.73
Majority 16.34 | 16.31|16.34 | 16.46 | 16.65| 16.44 | 16.38 | 16.62 | 16.67 | 16.71
DEePWALK 14.0 173 19.6 21.1 22.1 22.9 23.6 24.1| 24.6 | 25.0
SpectralClustering | 13.84 | 17.49 | 19.44 | 20.75 | 21.60 | 22.36 | 23.01 | 23.36 | 23.82 | 24.05
Macro-F1(%) | EdgeCluster 10.52 | 14.10 | 15.91 | 16.72 | 18.01 | 18.54 | 19.54 | 20.18 | 20.78 | 20.85
Modularity 10.21 | 13.37|15.24 | 15.11|16.14|16.64 | 17.02 | 17.1|17.14|17.12
wvRN 1.53 2461 291 | 3.47| 495] 556 5.82| 6.59] 8.00| 7.26
Majority 0.45 044 045 046 | 047| 044 045 047| 047 047

Table: Multi-label classification results in FLICKR
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‘ RESUItS: YOUTUbe Name | YOUTUBE

V| 1,138,499

|E| 2,990,443

V| A7
Labels | Groups

% Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
DeEEpWALK 37.95 39.28 40.08 40.78 | 41.32 | 41.72 | 42.12 | 42.48 | 42.78 | 43.05
SpectralClustering — — — — — — — — — —
Micro-F1(%) | EdgeCluster 23.90 | 31.68 | 3553 | 36.76 | 37.81 | 38.63 | 38.94 | 39.46 | 39.92 | 40.07
Modularity — — — — —
wvRN 26.79 | 29.18 33.1 | 32.88 | 35.76 | 37.38 | 38.21 | 37.75 | 38.68 | 39.42
Majority 24.90 | 24.84 | 2525 | 25.23 | 2522 | 2533 | 2531 | 2534 | 2538 | 25.38
DEEpWALK 29.22 31.83 33.06 33.90 | 34.35 | 34.66 | 34.96 | 35.22 | 35.42 | 35.67
SpectralClustering — — — — — — — — —
Macro-F1(%) | EdgeCluster 19.48 | 25.01 | 28.15 | 29.17 | 29.82 | 30.65 | 30.75 | 31.23 | 31.45 | 31.54
Modularity — — — — — —
wvRN 13.15 | 15.78 | 19.66 209 | 23.31 | 2543 | 27.08 | 26.48 | 28.33 | 28.89
Majority 6.12 5.86 6.21 6.1 6.07 6.19 6.17 6.16 6.18 6.19

Spectral Methods do not scale to large graphs.
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‘Parallelization
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. Parallelization doesn’t affect representation quality.

. The sparser the graph, the easier to achieve linear
scalability. (Feng+, NIPS 1)
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‘Variants / Future Work

= Streaming
o No need to ever store entire graph

1o Can build & update representation as new data
comes in.

= 'Non-Random” Walks

o Many graphs occur through as a by-product of
Interactions

a2 One could outside processes (users, etc) to feed
the modeling phase

o [This is what language modeling is doing]
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‘Take—away

Language Modeling technigues can be
used for online learning of network
representations.
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Thanks!

Bryan Perozzi
@phanein

bperozzi@cs.stonybrook.edu

DeepWalk available at:
http://bit.ly/deepwalk
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